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Abstract 

 
Nowadays, social organizations (at macro-level) can be represented as complex self-organizing sys-
tems that emerge from the interaction of complicated social behaviours (at micro-level). Modern 
multi-agent systems can be employed to explore “artificial societies” by reproducing complicated 
social behaviours. Unfortunately, promoting interactions only among pre-set behavioural models 
may limit the capability to explore all possible evolution patterns. To tackle this issue, we aim at 
discovering emergent social behaviours through simulation, allowing human people to participate in 
the simulation environment, so that the range of possible behaviours is not pre-determined. In order 
to support this new approach, we propose a system architecture that is able to support an endless 
session level between a software agent and a human player (called participatory framework). In par-
ticular, while network faults or human low reactivity do not allow the human being to control his 
agent, this system architecture adopts a virtual player mechanism (called ghost player) that takes 
control of the agent driven by the user. The advanced version of such a ghost player relies on sub-
symbolic Machine Learning techniques for mimicking the strategy of the off-line human being. 

 
1   Introduction 

Social organizations can be studied at many differ-
ent levels of abstraction and analysis. Historically, 
in the analysis of organizational decision-making 
processes, a common strategy is to reduce a com-
plex social activity to a single constrained optimisa-
tion problem that is solved by means of a (macro-
level) function. Nowadays, social organizations can 
be approached as complex self-organizing systems 
that emerge from the interaction of complicated 
social behaviours (at micro-level) (Lomi et al., 
Groningen 2003). This approach makes possible to 
explore the connection between the micro-level be-
haviour of individuals and the macro-level patterns 
that emerge from the interaction of many individuals 
(Lomi et al., Notre Dame 2003). It is possible to 
effectively describe these behaviours as the actions 
of agents into an environment, where the agents are 
the individuals and the environment is the complex 
self-organizing system. We consider an agent as a 
computer system capable of independent actions in 
order to satisfy its planned objectives. In particular, 
to describe a complex self-organizing system we 
need several individuals, while to reproduce it, we 

need several agents. Along with this consideration, a 
multi-agent system can be successfully employed, in 
order to describe self-organizing systems. A multi-
agent system is an environment that consists of a 
number of agents, which interact with one-another. 
Therefore, it is possible to reproduce social societies 
into a synthetic environment by creating “artificial 
societies”. To successfully mimic real societies, the 
multi-agent systems make the agents interact thanks 
to their ability to cooperate, coordinate, and negoti-
ate (Stone et al., 2000). Nowadays, multi-agent sys-
tems are used for educational purposes. For exam-
ple, a multi-agent system could be used as a com-
puter-based learning environment to teach students 
of social and economic schools a number of central 
issues when studying organizational and decision-
making processes, and the respective representation 
of problems (Chen et al., 1993; Colella et al., 1998). 
These “artificial societies” create a quasi-
experimental observation-generation environment 
where it is possible to conduct tests. Modern multi-
agent systems can be employed to explore multiple 
phenomena from natural to social ones by involving 
different disciplines: art, biology, chemistry, phys-
ics, computer science, earth science, games, mathe-



matics and social sciences.  
Well-known modern multi-agent systems are: 

Swarm (Minar et al., 1996), Repast (Collier et al., 
2003), Jas (Sonnessa, 2004), SPADES (Riley, 2003) 
and Netlogo (Wilensky, 1999). Swarm is a collec-
tion of (Objective-C) libraries that promotes the 
implementation of agent-based models. The Swarm 
code is Object-Oriented and facilitates the job of 
simulationists by supporting the incorporation of 
Swarm objects into their simulation programmes. Its 
programmes are hierarchical: the top level (called 
the “observer swarm”) creates screen displays and 
the levels below them. These levels (called the 
“swarm model”) implement the individual agents, 
schedule their activities, collect information about 
them and exchange it on the base of an “observer 
swarm” request. Swarm provides a lot of tutorials 
that share portions of code in order to facilitate the 
design of an agent-based model, for example: the 
management of memory, the maintenance of lists, 
the scheduling of actions. Jas and Repast are clones 
of Swarm originated from the translation of Swarm 
Objective-C sources into Java. In fact, they provide 
a (Java) library of objects useful to model, schedule, 
display and collect data from an agent-based simula-
tion. Again, they allow the visualization of the data 
obtained from the simulation by means of histo-
grams and sequence graphs. Further, they can show 
snapshots of the evolution of the simulated complex 
systems in a 2-dimensional (2D)  “movie” format. 
SPADES (System for Parallel Agent Discrete Event 
Simulation) is a middleware system for agent-based 
distributed simulation. SPADES allows the simula-
tionist to define the behaviour of agents (as remote 
processes) and the rules of the world where they 
live. Differently from the previous ones, it supports 
the distributed execution of the agents across multi-
ple operating systems, while at the same time it runs 
distributed simulations regardless of network or 
system load, adopting a fair policy. NetLogo is a 
programmable modelling environment that allows 
the simulationists to give instructions to several pas-
sive (i.e. patches) and active (i.e. turtles) agents all 
operating at the same time. It also implements a 
classroom participatory simulation tool (called 
HubNet). HubNet connects networked computers to 
the Netlogo environment by helping each user con-
trol an agent during a simulation.  

Typically (apart from Netlogo), a simulationist 
can interact with these multi-agent systems only 
during the configuration phase. This means that af-
ter a simulationist has chosen the initial conditions 
of the complex system, he simply becomes a specta-
tor of it (simulated) evolution. If the estimation of 
the system variables does not critically affect the 
soundness of the simulative results, the above ap-

proach works right. In other cases, alternative ap-
proaches are needed to tackle this problem (ill-posed 
problem). One of them is called “participatory simu-
lation” (Resnick et al., 1998; Wilensky et al., 1999). 
It provides a way to expand the capability of interac-
tions with these systems at run time. Hence, during a 
participatory simulation, each single user can play 
the role of individual system entities and can see 
how the behaviour of the system as a whole can 
emerge from the individual behaviours. These syn-
thetic environments promote the cooperation, coor-
dination, and negotiation among the agents con-
trolled by pre-fixed behavioural models (designed 
by a simulationist) and those driven by humans, all 
pursuing their own goals. The emergent behaviour 
of the model and its relation to the participation of 
humans can make the dynamics of the simulated 
system clearer. Therefore, these participatory role-
playing activities result useful to understand how 
complex dynamic systems evolve over the time. 
This approach is very didactic because it promotes a 
deeper comprehension of the evolution of the simu-
lated complex system. For example, consider a vir-
tual stock exchange, where each player (investor) 
can play the role of a virtual buyer or seller who 
engages in the activities of the resulting share ex-
change dynamics.  

The remaining part of this paper is organized as 
follows. In Section 2, we illustrate the main limits of 
the modern multi-agent systems, in general, and of 
agent-based participatory simulation activities, in 
particular. In Section 3, we present a new alternative 
approach that overcomes these limitations by adopt-
ing a ghost software mechanism and a participatory 
framework. Section 4 shows some results we ob-
tained with a prototypic implementation of our sys-
tem. Finally, Section 5 concludes our work with 
some hints for future developments. 
 
 
2   Limitations of MASs 
One of the main attractions of the above-described 
simulation environments is the easiness by which it 
becomes possible to statistically assess the validity 
of a model. Simulationists can simply explain their 
idea by writing some lines of code in natural lan-
guage and then start the simulation. During the evo-
lution they observe the values of some pre-fixed 
interesting variables and make decisions. Recent 
works permit to display, in real time, results of the 
simulation in 2-dimensional computer graphics (Re-
past; Jas; Netlogo). In our previous work (Cac-
ciaguerra et al., Las Vegas 2004), we improve these 
capabilities with a 3-dimensional (3D) computer 
graphics highlighting that this improvement allows 
to tackle a new class of problems from different 



points of view. Recently, the last release of Netlogo 
environment promotes another 3D visualization 
confirming our insight (Wilensky, 2005). Neverthe-
less the multi-agent simulations presented up to now 
share a common feature: they carry out interactions 
only between pre-set software behavioural models. 
While this is extremely important for statistical as-
sessments, we argue that it limits the generation of 
emerging complex behaviours in any simulation. 
Along with these considerations, we deem that there 
are two reasons for the limitation.  

The first is related to the simplicity of the model 
assumed. Every model is defined as a hypothetical-
deductive assumption related to some personal 
knowledge of the simulationist. In fact, the simula-
tionist tries to describe his insight about target prob-
lem in a way that a deterministic machine can inter-
pret. This approach is very sensitive to the level of 
accuracy when modelling the target problem. In 
fact, it results very difficult to accurately describe all 
the behaviours included in a model because of in-
trinsic complexity of social interactions. Then, to 
leave some degree of freedom, stochastic steps are 
often introduced causing a loss of sharpness in the 
analysis. In other cases, it is not possible to fully 
define a behavioural model because of the not-
deterministic physical law behind it. Considering 
these expert design issues, the analysis are often 
performed only at standard time intervals: at starting 
point, at running and finally at asymptote. Obvi-
ously changing the starting conditions the simula-
tion shows different behaviours, but asymptotically 
it reaches the same state-condition or the same peri-
odical fluctuation. This approach guarantees the 
statistical soundness of the simulation results while 
it limits the capability to explore all possible evolu-
tion patterns. 

The second reason is related to the bounded 
computational power. The current software is not 
able to handle large amounts of interactions in a 
timely way because of its engineering. In this case, 
as well as when facing typical problems related to 
physical simulations, the time constraint cannot be 
dealt with in a short period by making the experi-
mentation of complex models impossible. In addi-
tion, the analysis of physical systems may result 
easier than the social one because of the rigid con-
straints and the proven theories behind it. Hence, it 
seems to be difficult to implement social simulations 
that are able to generate new and emergent behav-
iours. We argue that, by reducing the constraints for 
the statistical soundness, it is possible to overcome 
the two limitations (due to both the model accuracy 
and the time constraint) in an efficient way. To 
achieve this result, it is necessary for accurate be-
havioural models to be able to interact together 
quickly and for a sufficiently long time inside a syn-

thetic environment. In particular, the following is 
needed: 
 
• A common protocol (i.e. language) to exchange 

information,  
• A high-bandwidth channel for managing com-

munication and  
• Large computation power to control behav-

ioural models. 
 

We believe that a cooperative game environment 
satisfies all the three requirements. A cooperative 
game is a special kind of game in which many peo-
ple play together to reach some pre-set goals. The 
agent-based participatory simulation shows to be 
one of the best approaches for implementing a co-
operative game. It is worth noting that according to 
our idea the game is the instrument for running a 
simulation and not the goal of the simulation. One 
of the main attractions of the transposition of the 
above problem from a pure software simulation into 
a cooperative game is that, in the transposed prob-
lem, humans can directly interact with the agents 
inside the synthetic environment by joining the 
game. Hence, any previous knowledge of the simu-
lation toolkits and programming language is needed, 
making the simulation methodology widely accessi-
ble. Therefore, it becomes possible to use humans as 
complex and accurate behavioural models for the 
simulation. In fact, apart from general considera-
tions about Artificial Intelligence (Penrose, 1994), 
we consider a human being as a very complex social 
behavioural model. Hence, in defining the objective 
of the game, we (implicitly) promote the human 
being to apply his own social model to a pre-fixed 
task. We argue that this is very similar to the mental 
process that the simulationist performs when writing 
a social model for a common simulation toolkit. In 
addition, humans obviously do not require addi-
tional computational power to interact together in a 
timely way. They also share a priori common lan-
guage to perform interactions. In fact while a soft-
ware simulation toolkit offers a hand-made protocol 
for exchanging information among agents, a game is 
self-explaining for humans. The 3D visualization 
(eventually extended with positional 3D audio) is 
the fastest way to perform interactions among peo-
ple. In fact, it exploits human natural senses and it is 
of immediate comprehension. Hence, the coopera-
tive game only demands to create and manage the 
shared environment to exchange information (that 
represents the game). In this way, the problem of 
time constraint is solved too. Further, the coopera-
tive game shows other interesting properties. While 
solving key problems when running a simulation 
some questions about experimental design arise.  
 



1. How can we analyse the behaviour of a hand-
made behavioural model in such context?  

2. Can we assume that providing a large number 
of participants and a long duration to the simu-
lation will resume the lost statistical soundness?  

3. And assuming this is right, how can we find 
such a large number of people that will play a 
simulation for an entire week?  

 
 
3   New approach 
In order to tackle these issues, we propose to popu-
late the cooperative game with virtual agents that 
play together with human players in the same envi-
ronment. Each virtual agent could be controlled by a 
software that implements hand-made behavioural 
models. Further, each human being is represented in 
the game by his digital avatar that can be fully con-
trolled. Hence, we can think of the avatar as another 
agent that is driven by the human being instead of a 
software. In this way, no distinction is made be-
tween human beings and software players inside the 
game context.  In line with this assumption, from a 
game perspective, it is easy to reach hundreds, thou-
sands even up to millions of concurrent players.  

Further, this approach offers interesting consid-
erations. First, it becomes very difficult (if not im-
possible) to distinguish inside the game between 
software programs and human being-controlled 
agents using a priory or trivial information. The only 
way to distinguish them is to analyse the behaviour 
of each agent for enough time to classify it with 
some pre-fixed model of knowledge. In other words, 
a human being should evaluate the strategy (i.e. the 
pattern of behaviour) of another agent by using his 
thought of strategy. Along with this consideration, 
we can think to create an agent that makes this clas-
sification extremely difficult. Hypothetically, pro-
gramming an agent so that no human being can rec-
ognize it as a software while playing with it for a 
long time should be possible. If this mimic game is 
successful, we could safely assert that this software 
has passed a new version of the Turing test (Turing, 
1950). Designing such a software is a hard task and 
out of the scope of this work. Despite this considera-
tion, promising technologies are emerging. 
 
 
3.1 Ghost player  
Nevertheless, maintaining a high number of human 
players for a long time is a hard job due to both 
physiological limits and technical issues. In fact, 
humans are quickly stressed by intense actions and 
briefly degrade their mental performances. In addi-
tion, depending on the modality of connection to the 
server (where the synthetic environment is accom-

modated), the played session can be broken by net-
work faults. In any case, a good participatory simu-
lative environment should not be affected by physio-
logical limits and network faults. To this aim, we 
propose a preliminary adaptive mechanism (see 
Figure 1) to avoid these problems penalize the evo-
lution of the complex system. The idea is the fol-
lowing: while a human player is gaming, a ghost 
player is joined to his agent. The ghost player has 
been previously programmed to run pre-fixed algo-
rithms (a.k.a. behaviourist model) in order to 
achieve some goals during the game. The ghost 
player is endowed with an adaptive mechanism able 
to recognize when the human player is not control-
ling his agent during the played session. Exploiting 
this mechanism, when the human player is not able 
to send moves to his agent, immediately, the ghost 
player starts to control it avoiding interruptions and 
the slowdown of the game. When the human player 
will be able to send moves to his agent again, the 
ghost player comes, immediately, in the background 
leaving the control. Hence, this adaptive mechanism 
is able to keep the game session of a human player 
alive during the human rest and the network faults. 
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Figure 1: System architecture of our approach 
 
 
Trying to keep the game alive this mechanism 

could partially corrupts its consistency. In fact, the 
ghost player might show a behaviour that is abso-
lutely different from human beings’ behaviours. If a 
lot of ghost players switch on and off intermittently 
this results in a high degree of unpredictability that 
potentially transforms the participatory game in a 
random game where no constructive interactions can 
be performed. In particular, a human player that is 



not able to send moves for a short time, could take 
the control of his agent again in a situation that has 
destroyed his long period strategy. 

Considering the previous considerations about 
the mimic game, we propose to replicate the strategy 
of the human player by providing the ghost player 
with mimic capabilities. The ghost player analyses 
the actions of the agent in background and seeks to 
fit its own pre-fixed behavioural model to the 
agent’s behaviour. In addition, exploiting Machine 
Learning (Dietterich, 1997; Mitchell, 1997) tech-
niques, it should be able, starting from an imperfect 
knowledge (i.e. noise-corrupted estimation of sys-
tem variables) of the environment, to automatically 
construct a behavioural model resembling that of a 
human being. A preliminary mimic methodology 
could be the following: the ghost player knows the 
legal actions inside the game and it is programmed 
to consider only a sequence of n moves. Then, it 
statistically updates the probability of performing 
the action y knowing that n actions x1,..., xn were 
previously done. We are planning to substitute this 
simple Bayesian statistics in order to reach more 
accurate fitting and generalization. We are looking 
for some candidate methodologies gathered from the 
field of sub-symbolic Machine Learning. In particu-
lar we are evaluating Artificial Neural Networks 
(Bishop, 1995), ε-Machines (Shalizi et al., 2000), 
and, especially, Support Vector Machines (Vapnik, 
1998), which demonstrated good generalization 
power in hard tasks (Campanini et al., 2004). 

It is worth noting that our purpose is not to cre-
ate an agent that learns to solve a given problem in 
an unknown environment and in unsupervised man-
ner. This goal had been deeply analysed in the 90’s 
and a bunch of symbolic algorithms were proposed 
to tackle it. Our aim is to teach an agent to replicate 
an existing behaviour starting from noise-corrupted 
knowledge. Thus, it is a sub-symbolic supervised 
Machine Learning task. 

 
 

3.2 Participatory framework  
According to the above-proposed approach, we de-
velop a participatory framework that supports the 
management of the interaction between humans and 
agents into any participatory simulation. A user can 
make decisions (and then can act in the synthetic 
environment) in place of the behavioural model of 
an agent. More simply, a user can participate in the 
evolution of the (remote) simulated complex system. 
Therefore, this framework implements a connection 
between the user and the agent where a (ISO/OSI) 
session level is exploited. The user drives a specific 
agent by means of a client at application level (ac-
cording to a client-server model architecture that 
recalls something similar to the Hubnet tool) that 

communicates over a network connection to the 
synthetic environment (see Figure 2). In particular, 
the session level becomes very useful if we are run-
ning a participatory simulation over an unreliable 
network. A typical multi-agent system architecture 
adopts a fair turn approach to evolve the synthetic 
environment. This means that each agent must act 
during each turn (also the NULL move is permit-
ted). Therefore, agents driven by humans must act 
according to the turn approach too. In addition, the 
actions coming from a remote human player might 
slow down the whole serialization of the sequences 
of fair turns. For this reason, the participation of 
multiple (remote) users can slow down the evolution 
of the simulated complex system to unacceptable 
speed. This may be due to two possible reasons:      
i) an interruption of the communication and ii) a 
user high-delayed move. In the case i), an interrup-
tion might be two kinds, momentary and permanent, 
depending on the cause that has generated it. A 
momentary interruption might be due to network 
congestion or outages of the communication chan-
nel. Instead, a permanent interruption could be due 
to either a client or a server disconnection. In the 
case ii), the high-delayed move could be due to the 
low reactivity of a human player. Further, it could 
also happens that a human player does not want to 
sent a move leaving the control of his agent to the 
ghost player to rest him-self. Hence, the main goal 
of this framework becomes to maintain the evolu-
tion of the simulated complex system over a certain 
time threshold supporting the human playability. For 
this reason, if the human player is not able to par-
ticipate in simulated system under this threshold, the 
framework guarantees the correctness of evolution 
within pre-fixed time constraints, by imposing on 
the slow agent to be driven by the ghost player.  
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Figure 2: Client-Agent as client-server architecture 

 
 
In addition, this framework manages the communi-
cation by means of a session recovery mechanism 
that allows the user to take the control of his agent 
again, after a disconnection from the participatory 



simulative environment due to a permanent interrup-
tion or due to his own free will. In the meantime, the  
ghost player generates moves for the agent waiting 
for the re-connection of the human player. In this 
way, the simulationist can exploit a distributed 
simulation environment that takes advantage of a 
session level over the standard ISO/OSI stack (see 
Figure 3). 
 
 
3.3 Implementation  
We develop a participatory framework that imple-
ments a session level over the TCP/IP stack (see the 
Figure 3). This framework guarantees the correct-
ness of the simulation evolution, and avoids the 
slowing down of its time performance by accurately 
managing a session mechanism between the human 
being and his agent. In particular, the participatory 
framework consists of a mechanism of session man-
agement and a communication management.  

The session management mechanism guarantees 
that the human being can participate in the simula-
tion by building his personal session. This means 
that a human player takes the control of an agent for 
a simulation run. Therefore, if the human player 
looses his connection (on purpose or against his own 
free will) with the agent, his participation in the 
simulation is guaranteed by the session management 
mechanism that gives the control to the ghost player. 
In the near future, if the human player connects to 
his agent again, the mechanism recovers the previ-
ously instantiated session by returning the control to 
the human being.  
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Figure 3: Participatory framework  
over TCP/IP stack 

 
 

While the session management mechanism is in 
charge of managing long period problems due to a 
disconnection, the communication management 
mechanism handles imminent short period ones such 
as, human low reactivity, network congestion and 
outages. The communication management mecha-
nism consists of an action timeout handler and a 

TCP timeout handler. The first is used by the com-
munication management mechanism to avoid that a 
low reactivity from the human player slows down 
the evolution of the complex systems under a certain 
frequency. In particular, the action timeout handler 
monitors the responsiveness of the client (on which 
the human being plays). Hence, the simulationist 
can set the upper bound (called action timeout) to 
the responsiveness at a configured time. Obviously, 
above this bound, the action timeout handler im-
poses on the ghost player to drive the agent in place 
of the human being. For sake of completeness, we 
report that the agent periodically sends session ac-
knowledgements to its client to confirm the respon-
siveness and to wait for the next move. Instead, the 
TCP timeout handler is used both at agent-side and 
client-side. This handler decides if the communica-
tion between the client (of the human being) and his 
agent is closed, based on statistical calculations. 
These statistics are related to the previous perform-
ance according to the agent responsiveness on cli-
ent-side and human being responsiveness on agent-
side. In particular, at agent-side, the TCP timeout 
handler sets the state of a communication as broken 
when a certain number (i.e. maximum consecutive 
action timeout configured by the simulationist) of 
consecutively lost interactions occurs. When the 
state of the communication is considered as broken, 
the TCP timeout handler closes it (with a shutdown). 
Instead, at client-side, the TCP timeout handler sets 
the state of a communication as broken, only after 
an amount of time (called TCP timeout) has passed 
without receiving any session acknowledgement 
from the agent. After a TCP timeout expiration, the  
TCP timeout handler at client-side closes the com-
munication (with a shutdown). Finally, the partici-
patory activity could be recovered by exploiting the 
session management mechanism. Therefore, it be-
come possible to request a new connection to own 
personal agent exploiting the session management 
mechanism in active way, by clicking a button, or in 
passive way, by setting up the configuration file to 
automatically connect again agent after the expira-
tion of a TCP timeout.  

 
 

4   Results 
In this section, we want to show some results that 
highlight the effectiveness of our approach. Along 
with this consideration, we implement a predator-
prey artificial ecosystem (a.k.a. pursuit domain)  as 
a model for participatory simulative environment 
that adopts our participatory framework and a ghost 
player. This simple biological model is the base for 
more complex systems. The predator-prey model 
randomly positions a variable number of preys and 
predators in a synthetic environment. Obviously, the 



preys’ goal is to escape, while the predator’s is to 
pursue them. Once a predator reaches a prey, it eats 
this. Otherwise, if a long period of simulated time 
passes, the predator dies for starvation. In particular, 
in these preliminary tests, we focus on the escape 
trajectory of the prey-agent (green ball of Figures 4-
6). The Figures 4, 5 and 6 summarize the video clip 
related to different runs of the artificial ecosystem 
(Cacciaguerra et al., December 2004), where the 
clip frames represent the output of the predator-prey 
model executed on our prototype. The red balls re-
port the previous positions of the prey-agent. Ac-
cording to this representation, the set of red balls 
represents the escape trajectory of the prey. In all 
the simulation runs, the prey-agent is driven by a 
human player during the initial period (see inset of 
Figure 4). After this period, the human player does 
not send the next moves, leaving the control of the 
prey-agent to the ghost player (in particular, after a 
maximum consecutive action timeout, the human 
being was disconnected; see the Figure 7). The pat-
tern of moves related to the human being is similar 
to a stairway. In Figures 4 and 5, the ghost player 
adopts his mimic capabilities trying to reproduce a 
pattern of moves (i.e. a strategy) similar to that of 
the human being. This does not mean that the ghost 
player duplicates exactly the learned pattern in a 
periodical manner or in replicated copies. Instead, 
the ghost player has learned the way in which the 
human player drives his agent (to escape) and ap-
plies this abstract knowledge to mimic his behaviour 
(called generalization). 
 
 
 

 
 
Figure 4: 2D visualization of the escape trajectory of 
the prey driven by ghost player with mimic capabili-

ties  (on Windows XP) 
 
 
 

This becomes clear in Figure 5 where the ghost 
player, stressed to learn the same sequence of moves 
(see inset in Figure 4), shows a different but similar 
behaviour as in Figure 4. Obviously, if we look at 
Figure 6, where the ghost player was running adopt-
ing a non-mimic (i.e. random) algorithm, it is clear 
that the pattern of moves is very dissimilar. 
 
 
 
 

 
 

Figure 5: 2D visualization of the escape trajectory of 
the prey driven by ghost player with mimic capabili-

ties (on Linux) 
 
 

 
 
 

 
 
Figure 6: 2D visualization of the escape trajectory of 

the prey driven by the ghost player without mimic 
capabilities (on Linux) 
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Finally, Figure 7 shows the responsiveness of the 
prey-agent during the previously presented simula-
tive run schemes. This graph illustrates the time 
spent by the prey-agent to insert it next move into 
the synthetic environment, showing three phases.  
 
I. From 0 to 2600 simulated time, the agent is 

driven by the (remote) human player. 
II. From 2601 to 5700 simulated time, the agent is 

driven by the (local) ghost player because the 
human being is not playing a move under the 
action timeout,  

III. After 5701 simulated time till the end, the agent 
is driven by the (local) ghost player because a 
TCP timeout has expired. 
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Figure 7: Responsiveness of the prey-agent before 
and after a user disconnection 

 
 
5   Conclusions 
We have designed and developed a software proto-
type able to support the execution of agent-based 
participatory simulative activities to discover the 
emergence of complex social behaviours. In particu-
lar, this prototype supports the participants with an 
endless session level that allows the human player to 
disconnect from the synthetic environment while a 
ghost player takes the control of his agent. A mim-
icking strategy has been developed to drive the 
ghost player by means of Machine Learning algo-
rithms. Coupling our framework with smart mimick-
ing capabilities makes it possible to engage agent-
based participatory simulation activities with thou-
sands of players dispersed in the world for a long 
time. The mimicking mechanism is fundamental to 
maintain a good level of coherence in the game dur-
ing network faults and human rest. Some results 
confirm, by means of visual graphs, the efficacy of 
our approach. In particular, the movie (in mpeg 
format) of the simulation run reported in Figure 4 
highlights the usefulness of our approach. We are 
designing our software prototype to pass to a new 
version of the Turing test using some methodologies 
gathered from the field of Machine Learning as Ar-

tificial Neural Networks, ε-Machines, and Support 
Vector Machines. Further, we are currently planning 
a massive experimental campaign to study the per-
formance of our participatory framework. We hope 
this will demonstrate the emergence of complex 
social behaviours. In order to achieve these results 
learning behavioural models through imitation 
seems to be a key point. We wish to conclude this 
work by mentioning that these trained behavioural 
models may be very effective in other possible ap-
plication fields such as digital cinema (Regelous, 
2005), edutainment (Wilensky et al., 1999), and 
multiplayer games (Ferretti et al., 2003) where peo-
ple can leave and come back.  
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